您好、欢迎来到现金彩票网!
当前位置:PC蛋蛋 > 最优估计 >

什么叫点估计和区间估计

发布时间:2019-06-10 18:29 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  点估计(point estimation)是用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。

  区间估计(interval estimate)是在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到。

  与点估计不同,进行区间估计时,根据样本统计量的抽样分布可以对样本统计量与总体参数的接近程度给出一个概率度量。

  点估计和区间估计是抽样推断的两种方法。点估计是在抽样推断中不考虑抽样误差,直接以抽样指标代替全及指标的一种推断方法。

  因为个别样本的抽样指标不等于全部指标,所以,用抽样指标直接代替全及指标,不可避免的会有误差。

  区间估计是抽样推断中根据抽样指标和抽样误差去估计全及指标的可能范围的一种推断方法。在从抽样指标推断全及指标时,用一定概率保证误差不超出某一给定范围。

  在统计中,进行点估计的方法有多种,例如矩估计法、最小二乘法、极大似然法,其中极大似然估计又有很多改进的形式,比如限制极大似然等。SAS/STAT的PROC步中允许用户在进行参数估计的时候指定不同的参数估计方法。

  点估计的矩估计法是由皮尔逊(Pearson)提出的,它直观、简便,是用样本矩作为总体相关矩的估计,特别是在不知道总体分布的情况下,也可以对总体数学期望和方差进行估计。只要知道总体随机变量的一些矩存在,就可以做相应的矩估计。

  但是,当总体的参数不能表示成矩的函数时,就不能用矩估计;此外,矩估计常常没有利用总体分布函数所提供的信息,因此也很难保证它有优良的性质。

  1、极大似然估计的基本思想是,以使样本的出现获得最大概率的参数值作为未知参数的估计值。例如,如果某事件发生的概率为p,且p只能取0.01或0.9,现在,在连续两次实验中该事件都发生了,那么显然认为p=0.9是合理的.

  又如,两人向同一目标各发射一枪,一人击中目标,另一人没击中目标,认为击中目标者比没有击中目标者的射击技术好也是合理的。

  2、极大似然法可以简单的理解为在所有可能的选择中选择“看起来最像的”的值作为参数的估计,是参数估计用得最多的方法,最早是由高斯在1821年提出的,但现在一般将其归功于R.A.Fisher,因为Fisher在1922年再次提出了这种想法,并证明了它的一些性质,从而使得极大似然法得到了广泛应用。

  既然对于一个未知参数,可以提出不同的估计量,那么自然也就会涉及比较估计量好坏的问题。这样一来,就需要给出评定估计量好坏的标准了。无偏性、有效性和相合性是衡量一个参数估计好坏的三个基本标准。

  3、从理论上讲,当一个估计量的数学期望等于被估计参数的真实值时,我们说,这个估计量是无偏的;简单地讲,一个无偏的估计量是指,当反复抽取样本的次数足够大时,由这些样本计算出来的该估计量的均值可以无限接近被估计参数的真实值。无偏估计的实际意义就说无系统误差。

  对估计量来说,除了要求它无偏、方差较小外,还要求它当样本容量n增大时,它将越来越接近于被估计参数的真实值,这个要求是很自然的,因为当n越大时,得到的关于总体的信息就越多。

  这个标准叫做相合性,也叫做一致性。相合性是对一个估计量的基本要求,若估计量不具有相合性,那么不论将样本容量n如何扩大,都不能将参数估计得足够准确,这样的估计量是不可取的。在大样本场合下,极大似然法一般都具备这三个性质。

  点估计(point estimation)是用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。点估计和区间估计属于总体参数估计问题。

  区间估计(interval estimate)是在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到。与点估计不同,进行区间估计时,根据样本统计量的抽样分布可以对样本统计量与总体参数的接近程度给出一个概率度量。

  由样本数据估计总体分布所含未知参数的真值,所得到的值,称为估计值。点估计的精确程度用置信区间表示。

  区间估计,是参数估计的一种形式。1934年,由统计学家J.奈曼所创立的一种严格的区间估计理论。置信系数是这个理论中最为基本的概念。通过从总体中抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,以作为总体的分布参数(或参数的函数)的真值所在范围的估计。

  设样本X=(X1,X2,…,Xn)的分布密度为L(X,θ),若固定X而将L视为θ的函数,则称为似然函数,当X是简单随机样本时,它等于(X1,θ)(X2,θ)…(Xn,θ),其中,(X,θ)是总体分布的密度函数或概率函数(见概率分布)。

  这个重要的估计方法是由德国数学家C.F.高斯在1799~1809年和法国数学家A.-M.勒让德在1806年提出,并由俄国数学家Α.Α.马尔可夫在1900年加以发展。它主要用于线性统计模型中的参数估计问题。贝叶斯估计法是基于“贝叶斯学派”的观点而提出的估计法(见贝叶斯统计)。

  对所考虑的置信区间(或上、下限)加上某种一般性限制,在这个前提下寻找最优者。无偏性是经常用的限制之一,如果一个置信区间(上、下限)包含真值θ的概总不小于包含任何假值θ┡的概率,则称该置信区间(上、下限)是无偏的。同变性(见统计决策理论)也是一个常用的限制。

  点估计(point estimation)是用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。点估计和区间估计属于总体参数估计问题。

  区间估计(interval estimate)是在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到。与点估计不同,进行区间估计时,根据样本统计量的抽样分布可以对样本统计量与总体参数的接近程度给出一个概率度量。

http://cairowatch.com/zuiyouguji/47.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有